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A set of complete two- and three-dimensional direct numerical simulations (DNS) in
a differentially heated air-filled cavity of aspect ratio 4 with adiabatic horizontal walls
is presented in this paper. Although the physical phenomenon is three-dimensional,
owing to its prohibitive computational costs the majority of the previous DNS of
turbulent and transition natural convection flows in enclosed cavities assumed a two-
dimensional behaviour. The configurations selected here (Rayleigh number based on
the cavity height 6.4 × 108, 2 × 109 and 1010, Pr =0.71) are an extension to three
dimensions of previous two-dimensional problems.

An overview of the numerical algorithm and the methodology used to verify the
code and the simulations is presented. The main features of the flow, including the
time-averaged flow structure, the power spectra and probability density distributions
of a set of selected monitoring points, the turbulent statistics, the global kinetic energy
balances and the internal waves motion phenomenon are described and discussed.

As expected, significant differences are observed between two- and three-
dimensional results. For two-dimensional simulations the oscillations at the down-
stream part of the vertical boundary layer are clearly stronger, ejecting large eddies
to the cavity core. In the three-dimensional simulations these large eddies do not
persist and their energy is rapidly passed down to smaller scales of motion. It yields
on a reduction of the large-scale mixing effect at the hot upper and cold lower
regions and consequently the cavity core still remains almost motionless even for
the highest Rayleigh number. The boundary layers remain laminar in their upstream
parts up to the point where these eddies are ejected. The point where this phenomenon
occurs clearly moves upstream for the three-dimensional simulations. It is also shown
that, even for the three-dimensional simulations, these eddies are large enough to
permanently excite an internal wave motion in the stratified core region. All these
differences become more marked for the highest Rayleigh number.

1. Introduction
Natural convection in parallelepipedic enclosures has been the subject of numerous

studies. Most of them can be classified in three main groups: cavities where the
flow is due to internal heat generation, cavities heated from below (Rayleigh–Bénard
configuration), and those heated from the sides. The configuration of the latter class
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is the differentially heated cavity, the situation that here is under consideration.
This models many engineering applications such as ventilation of rooms, cooling of
electronic devices or air flow in buildings. A summary of previous direct numerical
simulations of air-filled (Pr = 0.71) differentially heated cavities relevant in our context
is presented in the following. The coordinate system used is: x1 for the periodic
direction and x2 (horizontal) and x3 (vertical) for the two wall-normal directions. Ra2

and Ra3 are the Rayleigh numbers based on the cavity width and height, respectively.
A3 =L3/L2 and A1 = L1/L2 are the height and depth aspect ratios. Unless otherwise
mentioned, all cases use Boussinesq approximation.

The early numerical studies concentrated on configurations characterized by small
Rayleigh numbers in the steady laminar regime. After the pioneering work of
de Vahl Davis & Jones (1983), where the original benchmark formulation was estab-
lished for a set of square two-dimensional cavities with 103 � Ra � 106, Hortmann,
Peric & Scheuerer (1990) used a multigrid method to solve the problem with finer
meshes up to 640 × 640. Latter, solutions for the full range of two-dimensional
steady-state solutions (Ra3 � 108) were obtained using different methods by Le Quéré
(1991), Ravi, Henkes & Hoogendoorn (1994) and Wan, Patnaik & Wei (2001). The
three-dimensional cubic cavity (A1 = A3 = 1), with adiabatic horizontal walls and solid
vertical walls in the third direction is also a well-known configuration, but has received
comparatively less attention (see Fusegi et al. 1991; Tric, Labrosse & Betrouni 2000).
For large height aspect ratio cavities, in a certain range of Ra numbers, a steady-state
multicellular flow is obtained (see Lartigue, Lorente & Bourret 2000; Le Quéré 1990;
Schweiger et al. 1995).

Beyond a critical Rayleigh number, the two-dimensional differentially heated cavity
flows become time-dependent (periodic, chaotic and eventually fully turbulent). Owing
to the presence of high temperature areas at the bottom of the cavity, the configuration
with perfectly conducting horizontal walls is more unstable than the configuration
with adiabatic ones. Its transition to non-steadiness was studied by Winters (1987),
obtaining a critical number of Ra3 = 2.109 × 106, later confirmed by Henkes (1995).
For the square cavity with adiabatic horizontal walls, Le Quéré & Behnia (1998)
determinated the critical number as Ra = 1.82 ± 0.01 × 108 and studied the time-
dependent chaotic flows up to Ra = 1010. For the case of cavities also with adiabatic
horizontal walls and height aspect ratio A3 = 4, Le Quéré (1994) determined that there
is a Hopf bifurcation at Ra3 = 1.03 × 108 and that a chaotic behaviour is first observed
at Ra3 = 2.3 × 108. Two-dimensional chaotic flows have been studied by Farhangnia,
Biringen & Peltiery (1996), who carried out a direct simulation for Ra3 = 6.4 × 1010

and by Xin & Le Quéré (1995), who studied the situations with Ra3 = 6.4 × 108,
2 × 109 and 1010, recording statistics of the flow for Ra3 = 2 × 109 and 1010. The cavity
with A3 = 8, with Ra2 = 3.4 × 105 (unsteady), has been chosen as a test problem (see
Christon, Gresho & Sutton 2002, for example). For this configuration, the critical Ra2

number for the transition to unsteadiness is Ra2 = 3.0619 × 105. Time-dependent two-
dimensional flows have also been studied without using the Boussinesq approximation
by Paolucci & Chenoweth (1989) and Paolucci (1990), for Rayleigh numbers up to
1010 and different aspect ratios.

The transition from a two-dimensional steady laminar to a three-dimensional time-
dependent regime was first considered by Jansen, Henkes & Hoogendoorn (1993),
for the case of perfectly conducting horizontal walls in a cubic cavity with solid
vertical walls and numerically imposing flow symmetries. The critical Ra number was
estimated to be between 2.25 × 106 and 2.35 × 106, larger than the equivalent critical
number of a two-dimensional cavity. An oscillatory flow regime was studied by Fusegi,
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Hyun & Kuwahara (1992) under the same conditions, without assuming symmetry,
for Ra = 8.5 × 106. For the case of the adiabatic horizontal walls in a cubic cavity,
the transition to unsteadiness was studied by Jansen & Henkes (1996), assuming
symmetry. The critical Ra number obtained was between 2.5 × 108 and 3 × 108.
However, Labrosse et al. (1997) studied the same configuration without assuming
symmetry, obtaining a non-symmetric transition for Ra = 3.19 × 107, significantly
lower than in the equivalent two-dimensional case. A direct simulation of a turbulent
flow with Ra = 1010 was carried out by Fusegi et al. (1990), using a 62 × 122 × 62 mesh.

In a general differentially heated cavity problem with periodic vertical boundary
conditions where the boundary conditions do not force the flow to be three-
dimensional, there are three possible flow configurations: two-dimensional steady;
two-dimensional unsteady; and three-dimensional unsteady. A question relevant
in our context is whether there is a range of Rayleigh numbers where the flow
is two-dimensional but unsteady, this is, if the transitions to unsteadiness and
three dimensionality are simultaneous. This problem was considered in detail by
Henkes & Le Quéré (1996), for square differentially heated cavities (A3 = 1) with adia-
batic horizontal walls and perfectly conducting horizontal walls, using periodic vertical
boundary conditions in the third direction. In both cases, three-dimensional perturb-
ations were found to be less stable than two-dimensional perturbations, showing that
the assumption of bidimensionality is not correct (in time-dependent square differen-
tially heated cavity). A three-dimensional simulation was carried out for Ra =108, with
perfectly conducting horizontal walls, using A1 = 0.1 with four Fourier modes in the
x1-direction. Statistics of the flow were recorded and compared with the statistics of the
two-dimensional flow. The most significant difference found was an increase of the heat
transfer coefficient in the three-dimensional flow. For cavities of height aspect ratio 4,
the same question was considered by Penot, N’Dame & Le Quéré (1990). Experiment-
ally, it was found that in a cavity of A1 = 1.33 there is a transition to unsteadiness at
Ra3 ≈ 108 (in good agreement with Xin & Le Quéré 1995). Two-dimensional numerical
simulations confirmed this result. However, in a three-dimensional periodic vertical
boundary conditions simulation with a slightly lower Rayleigh number, Ra3 = 9.6 ×
107, with A1 = 1, the flow was found to be three-dimensional.

In conclusion, these results by Penot et al. (1990) and Henkes & Le Quéré (1996)
seem to indicate that for A3 = 1 and A3 = 4 (and large enough A1), the flows would
never be unsteady and two-dimensional. However, this conclusion is not valid for
other aspect ratios: Xin & Le Quéré (2002) showed that for A3 = 8, the critical
number for the transition to unsteadiness is Ra2 = 306 192 ± 10, whereas the two-
dimensional to three-dimensional transition is observed at a higher Ra2 number, at
least ≈3.84 × 105.

1.1. Motivation and summary of the present work

Concerning the turbulent regime, the state-of-the-art is not yet satisfactory. Although
most of the two-dimensional instability mechanics are now well-known (see Le Quéré
& Behnia 1998), three-dimensional effects in the turbulent regime are still a challenge.
Many experimental studies have been carried out (see Tian & Karayiannis 2000a, b;
Betts & Bokhtari 2000) providing valuable data for the testing and tuning of
turbulence models. However, the three-dimensional structure of the flow is far from
being fully characterized and many differences observed between numerical and
experimental results remain unexplained. For example, thermal stratification in the
cavity core can still not be predicted well and, despite the efforts of Salat et al. (2004) to
elucidate the origin of the discrepancies between numerical and experimental results,
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it is still an open problem. Moreover, for cavities with active lateral walls, most of
the three-dimensional direct numerical simulations have been restricted to values of
Rayleigh numbers corresponding to the end of the laminar regime or the transitional
regime (see Jansen et al. 1993; Tric et al. 2000). A three-dimensional direct numerical
simulation in a differentially heated cavity with adiabatic horizontal walls and periodic
vertical boundary conditions with A3 = 4, Pr =0.71 and Ra3 = 6.4 × 108 (Soria et al.
2004) has provided valuable data for investigating three-dimensional effects, finding
that the general features of the averaged flow do not change significantly if the flow
is treated as two-dimensional. The main differences are found near the downstream
corners where stronger recirculations occur for the two-dimensional simulation. On
the contrary, the second-order statistics are substantially different, specially at the
vertical boundary layers where two-dimensional simulation incorrectly predicts very
low turbulence values. However, the Rayleigh number studied by Soria et al. (2004),
which is only approximately 6 times above the critical value, corresponds to a very
weak turbulent flow.

The main objective of the present study is to improve our understanding of the
dynamics of turbulent convection in a differentially heated cavity for a set of two- and
three-dimensional direct numerical simulations with A3 = 4, Pr= 0.71, Ra3 = 6.4 × 108,
2 × 109 and 1010 (i.e. two orders of magnitude higher than the critical Ra number).
These configurations have been selected as a three-dimensional extension of the
two-dimensional problems studied in detail by Xin & Le Quéré (1995) and, of
course, as the natural next step of the work initiated by Soria et al. (2004). Periodic
boundary conditions in the x1-direction are used because they allow the study of three-
dimensional effects due to intrinsic instability of the main flow and not to the boundary
conditions. Hence, a uniform mesh in such a direction is suitable. This is an important
computational advantage because Fourier-based methods can be used to solve the
Poisson equation in one direction. The flow configurations chosen, according to the
numerical and experimental results carried out by Penot et al. (1990) and Soria et al.
(2004) (that are confirmed here by the present simulations), are time-dependent and
three-dimensional. As expected, all the two-dimensional results are in good agreement
with the data provided by Xin & Le Quéré (1995). Moreover, as was pointed out
by Salat et al. (2004), we also conclude that thermal stratification discrepancies
observed between numerical and experimental results cannot be attributed to the
two-dimensional assumption.

The present paper is arranged as follows. In the next section, the governing equations
and the numerical method are briefly described. In § 3, we present and discuss the
main features of the flows, including the time-averaged flow structure, the power
spectra and probability density distributions of a set of selected monitoring points,
the turbulent statistics, the global kinetic energy balances and the internal waves
motion phenomena. Both two- and three-dimensional sets of results are discussed and
compared. Finally, relevant results are summarized and conclusions are given in § 4.

2. Governing equations and numerical method
2.1. Governing equations

We consider a cavity of height L3, width L2 and depth L1 (height and depth aspect
ratios are A3 = L3/L2 and A1 = L1/L2, respectively) filled with an incompressible
Newtonian viscous fluid of kinematic viscosity ν and thermal diffusivity α. To account
for the density variations, the Boussinesq approximation is used. Thermal radiation
is neglected. Under these assumptions, the dimensionless governing equations in
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primitive variables are

∇ · u = 0,

∂u
∂t

+ (u · ∇)u =
Pr

Ra0.5
∇2u − ∇p + f ,

∂T

∂t
+ (u · ∇)T =

1

Ra0.5
∇2T ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)

where Ra (here, for simplicity, the subindex 3 is dropped) is the Rayleigh number
based on the cavity height (gβ�T L3

3)/(να) and Pr= ν/α and the body force vector is
f = (0, 0, PrT ). The reference length, time, velocity, temperature and dynamic pressure
used for the dimensionless form are, respectively, L3, (L2

3/α)Ra−0.5, (α/L3)Ra0.5, �T

and ρ(α2/L2
z)Ra. With the above reference quantities, the vertical buoyant velocity,

Pr0.5, and the characteristic dimensionless Brunt–Väisälä frequency, N = (CPr)0.5/(2π),
where C is the dimensionless stratification of the time-averaged temperature field, are
independent of the Rayleigh number.

The cavity is subjected to a temperature difference �T across the vertical iso-
thermal walls (T (x1, 0, x3) = 1, T (x1, 1/A3, x3) = 0) while the top and bottom walls
are adiabatic. At the four planes x2 = 0, x2 = 1/A3, x3 = 0, x3 = 1, non-slip boundary
condition are imposed for velocity. Periodic boundary conditions in the x1-direction
are used. The initial conditions are not relevant because the statistics of the flow are
recorded after a long enough time-integration period to reach a statistically steady-
state behaviour. Periodic vertical boundary conditions are used because they allow
us to study the three-dimensional effects due to the intrinsic instability of the main
flow and not to the boundary conditions. If we furthermore consider that the cavity
is filled with air (Pr =0.71) and that its height aspect ratio A3 is equal to 4, then the
configuration depends only on the Rayleigh number Ra and the depth aspect ratio A1.

2.2. Numerical method

2.2.1. Spatial discretization

Governing equations (2.1) are discretized on a staggered grid in space by second-
and fourth-order spectro-consistent schemes by Verstappen & Veldman (1997, 1998,
2003). Following the same notation, the symmetry-preserving discretization of the
Navier–Stokes equations becomes

Muh = 0, (2.2)

Ω
duh

dt
= −C(uh)uh + Duh + f h − Mt ph, (2.3)

where uh stands for the discrete velocity vector, Ω is a positive-definite diagonal
matrix representing the sizes of the control volumes, the convective coefficient matrix
C(uh) is skew-symmetric, the discrete diffusive operator D is a symmetric negative-
definite matrix and M is the discrete divergence operator. The discrete gradient
operator is the transpose of the discrete divergence multiplied by a diagonal scaling
G= −Ω−1M. Such discretization preserves the underlying symmetry properties of the
continuous differential operators. These global discrete operator properties ensure
both stability and that the global kinetic-energy balance is exactly satisfied even
for coarse meshes if incompressibility constraint is accomplished. Therefore, kinetic
energy is not systematically damped by the discrete convective term or does not
need to be damped explicitly to ensure the stability of the method. This is a crucial
point because an artificial dissipation would interfere with the subtle balance between
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Total Average
Case Ra N1 N2 N3 L1 γ2 γ3 (�x2)min �t time time Order

A 6.4 × 108 128 156 312 2.0 1.5 1.5 2.44 × 10−4 1.26 × 10−3 1000 800 2
B 2 × 109 64 144 318 1.0 1.75 0.0 1.88 × 10−4 1.27 × 10−3 800 550 4
C 1010 64 138 326 0.5 2.0 0.0 1.36 × 10−4 1.49 × 10−3 800 550 4

A2D 6.4 × 108 – 156 312 – 1.5 1.5 2.44 × 10−4 1.40 × 10−3 1000 800 2
B2D 2 × 109 – 144 318 – 1.75 0.0 1.88 × 10−4 1.29 × 10−3 800 550 4
C2D 1010 – 138 326 – 2.0 0.0 1.36 × 10−4 1.50 × 10−3 800 550 4

AA2D 6.4 × 108 – 218 438 – 1.5 1.0 1.74 × 10−4 6.96 × 10−4 450 300 2
BB2D 2 × 109 – 202 448 – 1.75 0.0 1.33 × 10−4 6.51 × 10−4 325 200 4
CC2D 1010 – 194 459 – 2.0 0.0 9.63 × 10−5 7.56 × 10−4 265 175 4

Xin & Le Quéré (1995)
6.4 × 108 – 64 128 – – – 1.51 × 10−4 2.0 × 10−3 400.0 – –
2 × 109 – 64 256 – – – 1.51 × 10−4 1.5 × 10−3 350.0 – –
1010 – 96 768 – – – 6.69 × 10−5 8.0 × 10−4 250.0 150 –

Table 1. Physical and numerical simulation parameters.

convective transport and physical dissipation, especially at the smallest scales of
motion. The energy transport equation is also discretized using a spectro-consistent
scheme.

A second-order symmetry-preserving discretization was used for solving the lowest
Ra number whereas the fourth-order counterpart has been used for the two highest
(see table 1). Verstappen & Veldman (2003) showed that with the fourth-order method,
coarser grids suffice to perform accurate numerical solutions. Therefore, here, grids
with similar spatial resolution (see table 1) to those used in Soria et al. (2004) have
been enough to solve cases with significantly higher Ra number.

2.2.2. Time-integration method

In order to simplify the notation, momentum equation (2.1) can be rewritten as

∂u
∂t

= R(u) − ∇p, (2.4)

where R(u) represents the right-hand side terms of the momentum equation except for
the pressure gradient. For the temporal discretization, a central difference scheme is
used for the time derivative term, a fully explicit second-order one-leg scheme proposed
by Verstappen & Veldman (2003) for R(u) and a first-order backward Euler scheme
for the pressure-gradient term. The incompressibility constraint is treated as implicit.
Thus, we obtain the semi-discretized Navier–Stokes equations

(β + 1/2)un+1 − 2βun + (β − 1/2)un−1

�t
= R((1 + β)un − βun−1) − ∇pn+1, (2.5)

∇ · un+1 = 0, (2.6)

where the parameter β is computed each time step to adapt the linear stability domain
of the time-integration scheme to the instantaneous flow conditions in order to use
the maximum �t possible. Therefore, we look for stability domains which include
eigenvalues λ= x + iy. As D is a symmetric and negative-definite matrix, the real
part x is negative and its values can be bounded by means of the Gershgorin circle
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theorem. The skew-symmetry of the C(uh) discrete operator also allows us to bound
the imaginary part y in the same way. Once eigenvalues are bounded, it is easy to
compute the β value that better fits the linear stability domain. In all the DNS carried
out here, the time step required for this dynamic scheme has been more than twice
as great, that is twice cheaper, than the standard second-order Adams–Bashforth
(β = 1/2) scheme. In practice, we choose the time step such that the time-integration
becomes unstable when the selected time step is enlarged by 10 %.

To solve the velocity–pressure coupling, we use a classical fractional step projection
method (see Chorin 1968; Yanenko 1971, for example). In the projection methods,
solutions of the unsteady Navier–Stokes equations are obtained by first time-
advancing the velocity field u without regard for its solenoidality constraint (2.6),
then recovering the proper solenoidal velocity field, un+1 (∇ · un+1 = 0). This projection
is derived from the well-known Helmholtz–Hodge vector decomposition theorem (see
Chorin 1993, for instance), whereby the velocity un+1 can be uniquely decomposed
into a solenoidal vector, up , and a curl-free vector, expressed as the gradient of a
scalar field, ∇p̃. This decomposition is written as

up = un+1 + ∇p̃, (2.7)

where the predictor velocity up is

up =
2βun − (β − 1/2)un−1

β + 1/2
+

�t

β + 1/2
R((1 + β)un − βun−1), (2.8)

and the pseudo-pressure is p̃ =�t/(β +1/2)pn+1. Taking the divergence of (2.7) yields
a Poisson equation for p̃

∇ · up = ∇ · un+1 + ∇ · (∇p̃) −→ ∇2p̃ = ∇ · up. (2.9)

Once the solution is obtained, un+1 results from the correction

un+1 = up − ∇p̃. (2.10)

2.2.3. Solution of the Poisson equation on a loosely coupled parallel computer

The discrete Laplacian operator of the Poisson equation (2.9) can be viewed as
the product of the discrete divergence operator M by the discrete gradient operator,
which is the transpose of the discrete divergence multiplied by a diagonal scaling
G= −Ω−1M. So, the Laplacian operator is approximated by the matrix product
L = −MΩ−1Mt . Therefore the discrete Poisson equation to be solved at each time step
is of the form

L ph = Mup
h . (2.11)

Based on a domain decomposition strategy, the parallelization of the explicit parts
of the code is straightforward. However, the efficient solution of the discrete Poisson
equations is a critical aspect. This issue is specially relevant in a low cost PC cluster
where the latency is high and the bandwidth network is low. Here, an extension to
fourth-order schemes (see Trias et al. 2006b) of the original direct Schur–Fourier
decomposition (DSFD) algorithm by Soria, Pérez-Segarra & Oliva (2003) is used. It
is based on a combination of a direct Schur method (see Soria, Pérez-Segarra &
Oliva 2002) in the two wall-normal directions and a Fourier decomposition in the
periodic direction. This algorithm allows us to solve each three-dimensional Poisson
equation to machine accuracy with only one all-to-all communication episode. This is
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Figure 1. Numerical errors versus mesh size for convective (�, second-order; �, fourth-order)
and divergence (�, second-order; �, fourth-order) operators for second- and fourth-order
discretizations.

the crucial point that makes feasible the DNS of turbulent flows on loosely coupled
parallel computers such as PC clusters.

2.3. Code and simulation verifications

2.3.1. Code verification

Before using the code developed for direct numerical simulations, it is necessary
to verify that it is correct (i.e. that it solves the governing equations (2.1) with the
prescribed boundary conditions and the expected order of accuracy). To do so, the
method of manufactured solutions (MMS), described by Roache (2002), was used.
In MMS, an arbitrary analytic function ua (that will be a solution of the PDE
system and accomplish the incompressibility constraint) is chosen. Then, the source
term f a that matches the arbitrary solution, is calculated analytically from the PDE
system to be solved. The initial and boundary conditions are obtained evaluating
ua . This procedure ensures that an analytic solution is obtained even for complex
equations such as the Navier–Stokes system. This analytic source term f a is evaluated
at the discretization nodes and used as input data for the numerical code. The time-
dependent numerical solution un is compared against ua , and it is checked that the
orders of accuracy obtained are in good agreement with the theoretical ones (see
figure 1). As the discretization is spectro-consistent, the exact fulfilment of the global
kinetic energy balance (see § 3.4) has been for more details about the code verification
see Soria et al. (2004).

2.3.2. Simulation verification

As no subgrid-scale model is used in the computation, the grid resolution and
the time step must be sufficiently fine to solve all the relevant turbulence scales.
Moreover, a sufficient length in the periodic direction is required to ensure that
turbulence fluctuations are uncorrelated at a separation of a half-period. The time to
begin the averaging period t0 and the time integration period �ta must also be long
enough to evaluate the flow statistics properly. Of course, for all these parameters, a
compromise between accuracy and computing time must be accepted.
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Figure 2. Examples of grid convergence study for two-dimensional simulations. (a) Overall
averaged Nusselt number scaled by Ra−1/4. (b) The maxima of u3 at the horizontal mid-height
plane. The abscissa represents the ratio, on a logarithmic scale, of the number of nodes for each
direction with respect to the number of nodes used for three-dimensional simulations (meshes
A, B and C), i.e. N1/(N1)3D = N2/(N2)3D = N3/(N3)3D = N/N3D . Finest meshes correspond to
two-dimensional cases AA2D, BB2D and CC2D (see table 1).

A total of 9 DNS have been carried out. The physical and numerical parameters
for all cases are given in table 1. (N1, N2, N3) are the number of grid points and
γ2 and γ3 the concentration parameters (see (2.12)). Total time stands for the total
integration time of Navier–Stokes equations from initial conditions (zero velocity
field and uniformly distributed random temperatures between 0 and 1, in our case)
and average time is the total time for computing statistics. In table 1, parameters
of Xin & Le Quéré (1995) are also presented for comparison. Grid spacing in the
periodic direction is uniform and the wall-normal points are distributed using a
hyperbolic-tangent function

(x2)j =
L2

2

(
1 +

tanh{γ2(2(j − 1)/N2 − 1)}
tanh γ2

)
. (2.12)

Spatial resolution in the two wall-normal directions is determined by means of a
systematic procedure based on successive mesh refinements explained by Soria et al.
(2004). Examples of the grid convergence studies for two-dimensional simulations are
displayed in figure 2 where each of these points corresponds to one full simulation and
statistical analysis. For the meshes corresponding to cases A, B and C (N/N3D = 1),
the results obtained seem to be reasonably close to the asymptotic value.

The mesh concentration factors γ2 and γ3 are computed to minimize the flow gra-
dients on the computational space for a set of representative instantaneous maps. The
increase of γ2 arises because the boundary-layer thickness decreases with the Rayleigh
number. Actually, the grid resolution near the isothermal vertical walls (see table 1)
obtained with this computational method is in quite good agreement with the Ra−1/4

laminar scaling. (The product (�x2)min Ra1/4 takes values 3.88 × 10−2, 3.97 × 10−2 and
4.31 × 10−2 for meshes corresponding to cases A, B and C, respectively.)

Finally, the direct comparison of our two-dimensional meshes (see table 1) and
statistical results with those reported by Xin & Le Quéré (1995) reconfirms the
adequacy of the grid resolution in the two wall-normal directions.

For three-dimensional simulations, the computational domain and grid resolution in
the homogeneous direction must be adjusted to ensure that the turbulence fluctuations
are uncorrelated at a separation of one half-period and the smallest relevant turbulent
scales are also well-resolved. Two-point correlations and one-dimensional energy



268 F. X. Trias, M. Soria, A. Oliva and C. D. Pérez-Segarra
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Figure 3. One-dimensional energy spectra at monitoring cavity locations at
(a) Ra =6.4 × 108, (b) Ra = 2 × 109 and (c) Ra =1010.

spectra defined, respectively, as,

Rφφ(r1, x2, x3) =
〈φ′(x1, x2, x3)φ

′(x1 + r1, x2, x3)〉
〈φ′2〉 , (2.13)

Eφφ(k1, x2, x3) =
〈
φ̂k1

(x2, x3)φ̂
∗
k1
(x2, x3)

〉
, (2.14)

where (·)∗ and 〈·〉 represent the complex conjugate and the average over time respec-
tively, are shown in figures 3 and 4 to illustrate the adequacy of the computational
domain and the grid resolution in the homogeneous direction. Three (x2, x3)-locations
have been monitored for each case (see table 4). A detailed explanation of these
locations is given in § 3.3.3.

Since there is no energy pile-up at high wavenumbers and the magnitude of the
energy density between the smallest and the largest wavenumbers has dropped several
orders of magnitude, the spanwise energy spectra displayed in figure 3 show that the
grid resolutions are enough. Similar results are obtained for one-dimensional energy
spectra computed at other (x2, x3)-locations.

In figure 4, spanwise two-point correlations Rφφ for the two wall-normal components
of velocity and the temperature at the same monitoring points are shown. For the
two lowest Ra numbers, the correlation values fall to zero for separations lower than
one half-period showing that the computational domain in the spanwise direction
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Figure 4. Two-point correlations at monitoring cavity locations at (a) Ra = 6.4 × 108,
(b) Ra =2 × 109 and (c) Ra = 1010.

is sufficiently large. Soria et al. (2004) performed the three-dimensional simulation
for the lowest Rayleigh number using the same spatial resolution in the spanwise
direction, but with L1 = 1. For such a configuration, two-point correlations Rφφ

suggested that the computational domain was not large enough. Here, with L1 = 2,
uncorrelated turbulent fluctuations at a separation of half of the domain size are
obtained. Nevertheless, when results are compared with those obtained with L1 = 1,
only insignificant differences are observed. Figure 4(c) shows that the two-point
correlations Rφφ for the highest Rayleigh number at the centre of the cavity are
significantly high. This indicates that the computational domain is not large enough
but, based on the previous results at Ra =6.4 × 108, it is not thought to seriously
affect any of the conclusions of the present work. Of course, future simulations with
a larger domain size will be necessary to confirm this assertion.

3. Results and discussion
3.1. Time-averaged flow

Averages over the three statistically invariant transformations (time, x1-direction and
central point symmetry around the centre of the cavity) are carried out for all
fields. The time-averaged temperature fields and the streamlines of the averaged flow
have been represented in the figure 5. A quantitative comparison with the results of
Xin & Le Quéré (1995) is difficult, but (as expected), the two-dimensional results seem
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(a) (b) (c)

Figure 5. Averaged solutions: (a) Ra = 6.4 × 108, (b) 2 × 109 and (c) 1010. For each solution,
the streamlines are on the left and temperature is on the right. For temperature fields,
the isotherms are uniformly distributed from 0 to 1. Top: two-dimensional results. Bottom:
three-dimensional results.

to be in very good agreement. A summary of several first-order statistics is presented
in table 2 for direct comparison.

Despite the relatively large range of Rayleigh numbers, all them exhibit similar
flow characteristics: thin vertical boundary layers and a large core area with very
low time-averaged velocity and a stratified temperature distribution. When the two-
dimensional and the three-dimensional results are directly compared we observe that
the flow structure is still very similar for the first two Rayleigh numbers except for
the formation of clearly stronger recirculations near the downstream corners (i.e. top
left-hand and bottom right-hand corner.) for the two-dimensional simulations.
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AA2D BB2D CC2D A B C

Nu 49.23 66.19 100.60 49.24 66.63 101.70

Numax 169.96 249.80 441.65 171.89 260.49 454.86
x3 4.52 × 10−3 1.12 × 10−3 0 3.63 × 10−3 0 0

u2max 8.69 × 10−4 6.04 × 10−4 6.18 × 10−4 9.02 × 10−4 6.36 × 10−4 4.24 × 10−4

x2 2.22 × 10−1 2.29 × 10−1 5.26 × 10−3 2.22 × 10−1 2.29 × 10−1 4.75 × 10−3

u3max 2.23 × 10−1 2.23 × 10−1 2.29 × 10−1 2.22 × 10−1 2.22 × 10−1 2.23 × 10−1

x2 7.51 × 10−3 5.76 × 10−3 3.75 × 10−3 7.26 × 10−3 5.76 × 10−3 3.75 × 10−3

x2Ra1/4 4.78 4.87 4.74 4.62 4.87 4.74

u2max 2.32 × 10−2 2.01 × 10−2 8.30 × 10−3 2.72 × 10−2 1.76 × 10−2 9.06 × 10−3

x3 9.49 × 10−1 9.47 × 10−1 9.58 × 10−1 9.52 × 10−1 9.57 × 10−1 9.86 × 10−1

u3max 4.49 × 10−2 3.63 × 10−2 2.60 × 10−3 4.47 × 10−2 1.67 × 10−2 2.03 × 10−3

x3 8.41 × 10−2 8.71 × 10−2 2.31 × 10−1 6.91 × 10−2 6.01 × 10−2 9.66 × 10−1

T max 8.93 × 10−1 8.90 × 10−1 8.86 × 10−1 8.91 × 10−1 8.93 × 10−1 9.07 × 10−1

x3 1 1 1 9.85 × 10−1 1 1

Table 2. Summary of the averaged flow results. By rows, from top to bottom, the magnitudes
are: the overall averaged Nusselt number, the maxima of the averaged local Nusselt and its
position at the vertical hot wall, the maxima of u3 and T at the horizontal mid-height plane
and their respective x2 positions, the maxima of u2 and T at the vertical mid-width plane and
their respective x3 positions.
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Figure 6. Averaged vertical temperature profile at mid-width. (a) Two-dimensional results.
(b) Three-dimensional results.

The waves travelling downstream grow up to a point where they disrupt the boun-
dary layers ejecting large unsteady eddies to the core of the cavity. The mixing effect
of these eddies, that throw hot and cold fluid respectively, tends to result in almost
isothermal hot upper and cold lower regions. The point where this phenomenon occurs
moves upstream of the boundary layer when the Rayleigh number is increased. This
mixing effect at the top and bottom areas of the cavity, clearly displayed in the
time-averaged solutions (figures 5 and 6), forces the temperature drop in the core of
the cavity to occur in a smaller region. The strengthening of the horizontal motion
by means of large unsteady eddies also results in a remarkable thickening of the
boundary layer in the downstream part and consequently a sudden decrease of the
vertical velocity (figure 8) and a reduction of the wall-shear stress (figure 7).
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Figure 7. Dimensionless time-averaged wall shear stress scaled by Ra−1/4.
(a) Two-dimensional results. (b) Three-dimensional results.

However, when comparing two- and three-dimensional simulations, a weakening
of all these effects is clearly observed in the three-dimensional results. Energy of the
large eddies thrown from the boundary layers is rapidly driven to smaller scales by
means of a vortex-stretching mechanism. As these large eddies do not persist in the
three-dimensional simulations, the mixing effect is not so evident (figures 5 and 6)
and the thickening of the boundary layer moves downstream (figure 8). A further
explanation of these phenomena is given in § 3.3.2.

The averaged temperature and vertical velocity component profiles displayed in
figure 8, show that velocity maxima remain constant (see also table 2) and that
identical profiles are obtained for more than half the vertical boundary layer when the
lengths are scaled by the laminar Ra1/4 factor. This laminar scaling is also observed
in table 2 for the position of its maxima. Discrepancies occur only from the point
where waves travelling downstream grow large enough to disrupt the boundary layer
totally. These conclusions are exactly the same for both two- and three-dimensional
simulations, confirming that in the range of Rayleigh numbers investigated, the
main part of the vertical boundary layer is still laminar or quasi-laminar. This also
confirms the adequacy of using the same grid resolution in the two wall-normal
directions for both two-dimensional and three-dimensional configurations.

Thermal stratification in the core of the cavity is a basic questions that still
remains open. Comparison between numerical and experimental results (see Salat
et al. 2004, for a detailed overview) for a wide range of width/height aspect ratios give
completely different results. Experimental studies yield a dimensionless stratification
of about 0.5 whereas numerical simulations predict values about 1. According to the
results obtained by Salat et al. (2004) and Soria et al. (2004), the two-dimensional
assumption is not a critical issue in explaining these differences. Salat et al. (2004)
also conclude that introducing experimental temperature measurements in the top
and bottom wall instead of assuming the adiabaticity hypothesis do not improve the
discrepancies in the thermal stratification. Our three-dimensional DNS results seem to
confirm their conclusions with respect to the two-dimensional assumption. The only
relevant difference observed (see table 5) is the slightly increased stratification value
observed for the two-dimensional simulation of the largest Rayleigh number, also
observed by Xin & Le Quéré (1995), that does not occur for the three-dimensional
counterpart simulation. Thus, once two-dimensionality and the adiabaticity hypothesis
have been discarded as critical issues, the next plausible candidates are the thermal
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Figure 8. Averaged temperature (left-hand side of pair) and vertical velocity (right-hand side
of pair) profiles at z = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Each vertical subdivision represents
0.5 units for temperature and 0.2 units for vertical velocity. For plots on the left, the abscissa
scale factor is 4x2 and for plots on the right, is 4x2Ra1/4. Top: two-dimensional results. Bottom:
three-dimensional results. Ra values as figure 7.

radiation effects, the isothermal hypothesis of the vertical walls and the Boussinesq
approximation.

3.2. Heat transfer

As expected from the similarity between the two-dimensional and three-dimensional
averaged thermal boundary layers, the time-averaged and spatial mean Nusselt
numbers are almost equal (see table 3) although slightly higher values are obtained
for three-dimensional results. (The reference heat flux is given by λ�T/L3, where λ is
the thermal conductivity. Thus, the dimensionless local Nusselt number at the vertical
hot wall is given by Nu = −∂T /∂x2|x2 = 0.) Table 3 also shows that Nusselt number
correlation is much closer to the Ra1/4 correlation for laminar flow than the Ra1/3
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Case Ra Nu NuXQ Nu/Ra1/4 Nu/Ra1/3 Nudown Nudown/Ra1/3

AA2D 6.4 × 108 49.23 49.2 0.3095 0.05712 3.00 3.48 × 10−3

BB2D 2 × 109 66.19 66.5 0.3129 0.05253 4.48 3.56 × 10−3

CC2D 1010 100.60 101.0 0.3181 0.04669 7.01 3.25 × 10−3

A 6.4 × 108 49.24 – 0.3096 0.05713 2.98 3.45 × 10−3

B 2 × 109 66.63 – 0.3151 0.05288 4.54 3.60 × 10−3

C 1010 101.70 – 0.3216 0.04720 7.86 3.65 × 10−3

Table 3. Nusselt number and correlations.

correlation for turbulent flow. The reason for such behaviour is that most of the heat
transfer occurs in the upstream part of the boundary layer where it is almost laminar.
To confirm this point, we have computed the mean Nusselt number at the most
downstream part where the boundary layer becomes turbulent. In the last column of
table 3, we see that the Nudown, that has been integrated from x3 = 0.8 to x3 = 1 over
the hot sidewall, is very close to the classical Ra1/3 turbulent scaling. This confirms
that at the most downstream part, boundary layers become turbulent.

The averaged local Nusselt distributions are also very similar, as can be observed in
the figure 9 (left-hand side). However, there are significant differences in the standard
deviation of the local Nusselt numbers. As can be observed in figure 9 (right-hand
side), large fluctuations, which always occur in the downstream part of the boundary
layer whereas upstream is almost laminar, display evident differences between two-
and three-dimensional configurations. For two-dimensional simulations, this region
of large fluctuations increases with the Rayleigh number and the standard deviation
maxima position moves downstream of the boundary layer. These phenomena has
also been observed by Xin & Le Quéré (1995) in their two-dimensional simulations.
However, for the three-dimensional simulations this region seems to remain almost
invariant slightly above x3 = 0.6 position while the peak moves upstream. Standard
deviation maxima display similar values to the two-dimensional counterpart, but occur
at higher positions. Another important difference is observed in the almost laminar
upstream part, where both profiles seem to collapse when the Rayleigh number is
increased.

3.3. Flow dynamics

A general view of the several instantaneous temperature fields is displayed in figure 10.
At first sight, we can see that when the Ra number is increased, important differences
between two- and three-dimensional simulations are observed. With the aim of
elucidating the origin of such differences and the physical mechanisms involved,
several flow dynamics aspects are analysed and discussed in the next sections.

3.3.1. Two- and three-dimensional turbulence

As is well known, the most relevant feature of ‘two-dimensional turbulence’ is its
ability to form large persistent vortices even out of an initially disordered flow, by
means of an inverse cascade of energy. This self-organization of two-dimensional
flows can be explained by considering the convective contribution to the temporal
evolution of the enstrophy

1

2

d

dt

∫
Ω

w2 dΩ = − Pr

Ra0.5

∫
Ω

(∇2u)2 dΩ+

∫
Ω

((u · ∇) u) · ∇2u dΩ −
∫

Ω

f · ∇2u dΩ, (3.1)
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Figure 9. Local Nusselt number distribution (left-hand side) and their standard deviation
(right-hand side): (a) Ra =6.4 × 108, (b) Ra = 2 × 109 and (c) Ra = 1010. Solid line, two-
dimensional; broken line, three-dimensional.

where w = ∇ × u is the vorticity. When the flow is forced to be two-dimensional, the
convective term becomes zero,∫

Ω

((u · ∇) u) · ∇2u dΩ = 0, (3.2)

for any incompressible velocity field (if the boundary terms vanish, as in our con-
figuration). This additional enstrophy invariant for two-dimensional Navier–Stokes
equations, when viscosity and forcing terms are ignored, is responsible for the
characteristic inverse energy cascade (see the pioneering work of Kraichnan 1967,
for instance). In three dimensions, the convective contribution does not vanish and
the energy is driven to smaller scales of motion by means of the vortex-stretching
mechanism.
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(a) (b) (c)

Figure 10. Instantaneous isotherms: (a) Ra =6.4 × 108, (b) 2 × 109 and (c) 1010. For each
solution the two-dimensional results are on the left and the three-dimensional results on the
right. The isotherms are uniformly distributed from 0 to 1.

In our case, despite the relatively low Rayleigh numbers considered, significant
differences between two-dimensional and three-dimensional turbulence flow dynamics
are observed in the time sequences of the two-dimensional sections of isotherms
displayed in figures 12 and 13. Two-dimensional animations show persistent vortices
that are transported to the centre of the cavity. This phenomenon becomes more
marked for the two highest Rayleigh numbers.

These features of the two- and three-dimensional flows are also important from a
theoretical point of view. The orthogonality property (3.2) is widely used in the proof
of existence and uniqueness of weak and strong solutions of the two-dimensional
Navier–Stokes equations. However, in three dimensions, this is still an open problem.
Verstappen (2007) and Trias et al. (2006a) note the importance of preserving the
symmetry properties that form the basis for the conservation of kinetic energy,
enstrophy (in two dimensions) and helicity (in three dimensions) in regularization
modelling of turbulence. Note that, as discussed in § 2.2.1, the spatial discretization
used here preserves the underlying symmetries of the continuous differential operators
and therefore it holds discretely all these global inviscid invariants.

3.3.2. Instantaneous fields

Figures 11, 12 and 13 show time sequences of instantaneous temperature fields.
Soria et al. (2004) analysed in detail the dynamics of the lowest Rayleigh number
considered here and concluded that both two- and three-dimensional configurations
have a motionless and stratified cavity core and concentrate important fluctuations in
the two downstream corners of the cavity. The main differences occur in the vertical
boundary layers. For the two-dimensional simulation, it is almost totally stable and
only periodic oscillations can be observed in the most downstream part of the boun-
dary layer whereas in the three-dimensional simulation, instabilities generated in the
upstream corner move downstream resulting in high values for turbulent statistics
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Figure 11. Time sequence of instantaneous isotherms at Ra =6.4 × 108. Zoom around the
top left-hand corner. Time step between consecutive snapshots is ≈0.25. Top: two-dimensional
simulation. Bottom: three-dimensional simulation. The isotherms follow the same uniform
distribution as used in figure 10.

at the vertical boundary layer, as discussed in following sections. Also, in the two-
dimensional results, the vortices at the end of the vertical boundary layers are more
vigorous and stable, as can also be appreciated in the streamline maps displayed
in figure 5 (left-hand sides). Occasionally, in the three-dimensional simulation, there
are large instability episodes where the three-dimensional structures generated at the
top right-hand and bottom left-hand areas of the cavity propagate across all the
vertical boundary layers. However, this phenomenon (that has not been observed in
the two-dimensional results) is too infrequent to generate significant values of u′

1u
′
1

and u′
2u

′
2 at the vertical boundary layers.

At Ra =2 × 109, for the two-dimensional simulation, the oscillations at the down-
stream of the boundary layer are clearly stronger ejecting large eddies into the cavity
core where the isotherms exhibit a periodical motion around the mean horizontal
position. Such two-dimensional large-scale coherent vortex structures are very effective
in convective transport. However, in the three-dimensional simulation these large
eddies do not persist and their energy is rapidly passed down the cascade to smaller
eddies. It yields a manifest reduction of the large-scale mixing effect at the hot upper
and cold lower regions and consequently a still motionless stratified cavity core.

For the highest Rayleigh number, Ra = 1010, differences between the two- and
three-dimensional simulations become more marked. The boundary layers still remain
laminar in their upstream part up to the point where large unsteady eddies are ejected
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Figure 12. As figure 11, but for Ra = 2 × 109 and time step ≈0.335.

Point x2 x3 6.4 × 108 2 × 109 1010

A 0.03675 0.8535 × × ×
B 0.0095 0.8535 × × ×
C 0.0095 0.725 ×
D 0.0095 0.778 × ×

Table 4. Monitoring cavity locations.

into the cavity core. For the two-dimensional simulation, this occurs around x3 = 0.6
(at the hot vertical wall) which agrees well with Xin & Le Quéré (1995), meanwhile for
the three-dimensional one, the vertical boundary layer remains laminar up to x3 = 0.75.
This was also observed when comparing time-averaged profiles with lengths scaled
by a Ra1/4 factor in figure 8 (right-hand sides). At this Rayleigh number, again large
vortices ejected from the boundary layer are rapidly stretched and the mixing effect
clearly reduced. The cavity core remains almost motionless and well stratified, in an
evident contrast with the two-dimensional simulation results that display increasingly
large top and bottom regions of disorganization that consequently reduce the area of
uniform temperature stratification.

3.3.3. Power spectra and probability density functions

Time traces of the temperature and the two wall-normal velocity components have
been monitored at the same points as used by Xin & Le Quéré (1995) (see table 4)
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Figure 13. As figure 11, but for Ra = 1010. Time step ≈0.281.

for a direct comparison. These points are located in the downstream part of the hot
boundary layer. Points B, C and D are located around the maximum velocity while
A is located at the outer edge of the boundary layer.

The probability density functions (PDF) of the temperature and velocity signals
for the two highest Rayleigh numbers at the monitored positions are displayed in
figures 14 and 15. The results are in a good agreement with the two-dimensional
results of Xin & Le Quéré (1995). Wall effects and stratification of the core of the
cavity are sources of the anisotropy seen in the PDF of the u2 velocity component
for which the proximity of the wall prevents large negative fluctuations while positive
ones are not constrained. At Ra =2 × 109, the effect of three-dimensional fluctuations
produces slightly different PDF profiles, specially for the vertical velocity component.
For the highest Rayleigh number, the three-dimensional results display a significantly
higher range of values for the u2 component of velocity. However, as expected, the
most evident differences between two- and three-dimensional results occur at the
point labelled A, located at the outer edge of an already disrupted boundary layer.
As we have seen in § 3.3.2, such disruption occurs at a more downstream location for
the three-dimensional simulations and this difference become more marked when the
Ra number is increased.

Normalized density power spectra of temperature displayed in figures 16 and 17
show that low-frequency modes contain a large part of the total energy. (The power
spectrum of each variable is normalized such that the peak be equal to unity.) Only
for Ra = 2 × 109 simulations and for the three-dimensional simulation of the highest
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indicate the time-averaged values. Top: two-dimensional results. Bottom: three-dimensional
results.
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Figure 15. Probability density functions at (a) A, (b) B and (c) D for Ra = 1010. Vertical lines
indicate the time-averaged values. Top: two-dimensional results. Bottom: three-dimensional
results.

Rayleigh number and at the lowest location C, the high-frequency boundary-layer
instability becomes clearly evident. This high-frequency mode is still slightly visible
at point B, specially for the three-dimensional simulations, whereas at point A, that
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Figure 16. Normalized density power spectra of temperature. From top to bottom: at A, B and
C for Ra = 2 × 109. Left-hand side: two-dimensional results. Right-hand side: three-dimensional
results.

it is almost at the cavity core, the power spectra is dominated by very low-frequency
oscillations. The origin of such oscillations is related to the formation of the large
unsteady eddies ejected from the most downstream part of the boundary layer into the
cavity core. This explains the persistence of the high frequency of the boundary-layer
instability for the three-dimensional simulations at the B and C locations, whereas
for the two-dimensional simulations the boundary layers have already been totally
disrupted.

3.3.4. Internal waves

Although the velocities in the core of the cavity become much smaller compared
to the velocities in the vertical boundary layers for increasing Rayleigh number (see
figure 8), simulations show that the cavity core is in motion and the isotherms in
this region oscillate around the mean horizontal profile. Since the core of the cavity
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Figure 17. Normalized density power spectra of temperature. From top to bottom: at A, B and
D for Ra = 1010. Left-hand side: two-dimensional results. Right-hand side: three-dimensional
results.

is well stratified (see figures 5 and 6), this phenomenon can probably be attributed
to internal waves. Traditionally, the mean Nusselt number through the vertical mid-
plane Nuc has been used to characterize this wave motion. The normalized density
power spectra of Nuc (figure 18) show that fundamental frequencies for two- and
three-dimensional simulations are similar. Since stratification of the time-averaged
temperature fields in the core region is not significantly influenced by the three-
dimensional fluctuations, we could expect such agreement. However, it was not clear
a priori that excitation frequencies that characterize the largest structures in the three-
dimensional configurations were large enough to excite the internal wave motion
permanently. In table 5, these fundamental oscillation frequencies are compared
with the dimensionless Brunt–Väisälä frequencies: N = (CPr)0.5/(2π) (see Lighthill
2002, for instance), where C is the dimensionless stratification of the time-averaged
temperature. The results show a relatively good agreement between both sets of values
for all configurations.
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–8

–6

–4

–2

0

0 1 2 3

0.093

–4

–2

0

0 1 2 3

0.103

–8

–6

–4

–2

0

0 1 2 3

0.152

–8

–6

–4

–2

0

0 1 2 3

0.131

Frequency Frequency
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Ra 2D 3D Xin & Le Quéré C2D C3D CXQ (N )2D (N )3D (N )XQ

6.4 × 108 0.093 0.103 – 1.01 1.02 – 0.135 0.135 –
2 × 109 0.128 – 0.130 1.00 1.01 1.00 0.134 0.135 0.134

1010 0.152 0.131 0.137 1.08 1.02 1.20 0.140 0.135 0.147

Table 5. From left to right: fundamental frequencies of the Nuc , dimensionless stratification
in the core of the cavity and Brunt–Väisälä frequency.

The dispersion relation for a linearly stratified fluid is given by ω2 = N2/(1+m2/k2),
where ω is the excitation frequency and k and m are the horizontal and vertical
components of the wave vector generated (see Lighthill 2002, for example). Moreover,
the angle between the excitation and the propagation wavenumbers is given by
θ = arccos(ω/N). Thus, internal waves are generated only if ω � N . When the system
is excited at the eigenfrequency (ω = N), wave propagation is in the same direction
as excitation whereas low excitation frequencies (ω 	 N) generate perpendicular
wave propagations. Therefore, as was pointed out by Xin & Le Quéré (1995), the
permanent excitation of internal waves is due to the large eddies ejected from the
vertical boundary layer at the hot upper and cold lower regions. We conclude that
these eddies are large enough, even in the three-dimensional configurations, to be
characterized by excitation frequencies ω smaller than the Brunt–Väisälä frequency
and therefore permanently maintain an internal wave motion.
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3.3.5. Second-order statistics

The distributions of turbulent kinetic energy k = u′
iu

′
i , its total viscous dissipation

rate εν =(∇u′ + (∇u′)t ) : ∇u′, the temperature variance T ′T ′, the turbulent heat flux
u′

3T
′ and two of the four non-zero components of the Reynolds stress are shown

in figures 19, to 21. It should be noted that, as the domain is homogeneous in the
x1-direction, all the statistics are independent of x1, u1 = 0, and the fluctuations of u1

are uncorrelated with the fluctuations of other variables, i.e. u′
1u

′
2 = u′

1u
′
3 = u′

1T
′ = 0,

except statistical noise that decreases with the integration period. Obviously, the
component u′

1u
′
1 vanishes for the two-dimensional simulations.

At Ra = 6.4 × 108, the maxima and spatial distributions of the non-zero Reynolds
stress tensor are already significantly different. For the two-dimensional results, as
can be seen in figure 19, all the turbulent statistics are almost zero at the vertical
boundary layers. In the two-dimensional case, the vertical boundary layers are almost
steady, and the fluctuations are concentrated at the top and bottom regions, where the
second-order statistics have more complex distributions than in the three-dimensional
simulations (e.g. the maps of u′

2u
′
2 obtained in the two-dimensional simulations also

have a minimum at the corners, not present in the three-dimensional case). The
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two-dimensional and three-dimensional distributions of u′
3T

′ are completely different.
This behaviour is also observed in Soria et al. (2004).

In the top parts of figures 20 and 21, two-dimensional results at Ra = 2 × 109 and
Ra = 1010, respectively, are presented. As expected, they are again in good agreement
with Xin & Le Quéré (1995). Second-order statistics are only significant in the
downstream part of the vertical boundary layers whereas the most upstream parts
and most of the cavity core are laminar. Turbulent statistics and the region of large
fluctuations increase with the Ra number. However, significant differences occur with
the three-dimensional results (see also figures 20 and 21, bottom). At first sight we see
that the spatial distribution of turbulent statistics differs substantially and that such
differences become more evident when increasing the Ra number. At Ra = 2 × 109, the
three-dimensional results still display important fluctuations at the vertical boundary
layer compared with the almost zero values of the two-dimensional counterpart.
Viscous dissipation rate εν and the turbulent heat flux u′

3T
′ are the statistics where this

phenomenon is more evident. However, the most significant difference is that whereas
for two-dimensional simulations the region of large fluctuations increases, for three-
dimensional configurations it tends to decrease, shrinking to the two downstream
corners. Thus, we conclude that flow anisotropy is even larger for three dimensions
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where regions with high values of turbulent statistics coexist with a large laminar
region. Such a phenomenon becomes clearly marked for the highest Rayleigh number
results (see figures 21 and 22).

Since their physical origin is the same, the spatial correlations between different
second-order statistics do not differ significantly between two-dimensional and three-
dimensional simulations. Near the vertical walls, the non-slip boundary conditions
for velocity make ∂u′

3/∂x2 the leading term of the viscous dissipation rate εν with its

maxima located close to the wall, while k is essentially contributed by u′
2u

′
2 whose

maxima is located outside the boundary layer. This explains the bad correlation
observed between two important quantities for turbulence modelling such as k and
εν . The horizontal profiles at x3 = 0.8, a region with high values of turbulent statistics,
displayed in figure 22 show more clearly that these two quantities become more
uncorrelated when Ra is increased.

3.4. Kinetic energy balances

The transport equation for kinetic energy, e =(1/2)u · u is obtained from the scalar
product of velocity vector and momentum equation,

∂e

∂t
= − ∇ · (eu) +

Pr

Ra0.5
∇ · (u · (∇u + ∇ut )) − Pr

Ra0.5
φ(u) − ∇ · (pu) + u · f , (3.3)
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where φ(u) = (∇u+∇ut ) : ∇u. The term −PrRa−0.5φ(u) is the kinetic energy dissipation
rate that arises from the viscous forces term PrRa−0.5∇2u. Integration of (3.3) in the
spatial domain Ω yields

dEK

dt
=

∫
∂Ω

(
−eu+

Pr

Ra0.5
u · (∇u+∇ut )+pu

)
· dS+

∫
Ω

(
u · f − Pr

Ra0.5
φ(u)

)
dΩ, (3.4)

where EK =
∫

Ω
e dΩ is the total kinetic energy. The first term, which accounts for the

boundary interactions, is zero in domains where all the boundaries are either periodic
or with zero velocity u|∂Ω = 0 (or a combination of both, as in our case). Considering
these types of boundary conditions, the instantaneous global kinetic energy balance
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equation can be expressed as

dEK

dt
=

∫
Ω

(
u · f − Pr

Ra0.5
φ(u)

)
dΩ =

∫
Ω

(
PrT u3 − Pr

Ra0.5
φ(u)

)
dΩ. (3.5)

It is clear from this expression that the only term of the momentum equation
that contributes to the evolution of the total kinetic energy is −PrRa−0.5φ(u), which
necessarily dissipates kinetic energy to thermal energy (as φ � 0) and the body force
term u · f that can either generate or dissipate kinetic energy. Pressure gradient and
convective terms have a local effect, but do not contribute to the global kinetic energy
balance. As the spectro-consistent numerical schemes by Verstappen & Veldman
(2003), outlined in § 2.2.1, used for the simulations do not introduce any artificial
dissipation, the discrete velocity fields verify exactly the equality (3.5), even for very
coarse meshes. This has been tested as an additional verification of the code.

Averaging (3.5), for a long enough time integration period, a global kinetic energy
balance is obtained, which expressed per volume unit is given by

Pr

V

∫
Ω

(u3T + u′
3T

′) dΩ︸ ︷︷ ︸
Eg

=
Pr

V Ra0.5

∫
Ω

(φ(u) + φ(u′)) dΩ︸ ︷︷ ︸
Ed

, (3.6)

where V is the cavity volume. That is, for a statistically stationary flow, Eg , the
averaged kinetic energy generation rate (only due to the buoyancy forces in our
case) must be equal to Ed , the averaged kinetic energy dissipation rate due to viscous
forces. Since the instantaneous kinetic energy balances are exactly satisfied, the energy
imbalance expression |Eg − Ed |/Eg can be used to control whether averaging time is

long enough. The values of Eg obtained in the different simulations can be found in
table 6. At first sight, we see that the dimensionless overall kinetic energy generation
rate Eg tends to decrease with the Rayleigh number following a correlation closer to

Ra−1/4. We also observe that slightly higher values are obtained for three-dimensional
simulations. At § 3.1, we saw that time-averaged temperature and vertical velocity
profiles for different Rayleigh numbers collapse when the laminar Ra1/4 scaling is
used for lengths (see figure 8). We also saw that such laminar behaviour is exhibited
in the upstream part of the boundary layers, where most of the kinetic energy is
generated, and extends for more than half of the cavity. Thus, the Ra1/4 scaling
shown by the overall kinetic energy generation rate Eg is not surprising. With respect
to the slightly higher values obtained for the three-dimensional simulations, such
discrepancies probably occur because, as we saw in previous sections, the point where
vertical boundary layers become totally disrupted moves downstream, resulting in a
larger region of quasi-laminar behaviour.

In table 6, we also observe important discrepancies between two-dimensional and
three-dimensional results for the turbulent dissipation term, PrRa−0.5/V

∫
Ω

φ(u′) dΩ .
Higher values are obtained for the three-dimensional simulations for the first two
Rayleigh numbers, but a sudden decrease occurs for the three-dimensional results
of the highest Rayleigh number. Meanwhile, the two-dimensional counterpart seems
to go on growing with the Ra number. A reasonable explanation is that, as we saw
in § 3.3.5, for the two-dimensional simulations, when the Ra number is increased the
regions with high turbulent fluctuations spread out, reducing the region of uniform
stratification, whereas for the three-dimensional simulations, such regions seems to
shrink to the two downstream corners of the cavity. Finally, turbulent generation
term, Pr/V

∫
Ω

u′
3T

′dΩ displays completely different tendencies. It seems clear that it
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Case Ra Eg = Ed

Pr

V Ra0.5

∫
Ω

φ (u′) dΩ
Pr

V

∫
Ω

u′
3T

′ dΩ EgRa1/4

AA2D 6.4 × 108 1.976 × 10−3 3.89 × 10−5 1.81 × 10−7 0.314
BB2D 2 × 109 1.491 × 10−3 6.39 × 10−5 −9.39 × 10−7 0.315
CC2D 1010 1.002 × 10−3 8.04 × 10−5 −1.65 × 10−5 0.317

A 6.4 × 108 1.996 × 10−3 5.33 × 10−5 4.71 × 10−6 0.317
B 2 × 109 1.524 × 10−3 8.08 × 10−5 2.36 × 10−6 0.322
C 1010 1.023 × 10−3 6.67 × 10−5 2.41 × 10−7 0.323

Table 6. Global kinetic energy balances.

tends to decrease with Ra number; however, this reduction is more marked for the
two-dimensional simulations, obtaining negative values of turbulent generation term
for the two highest Rayleigh numbers. It is necessary to perform simulations at higher
Rayleigh numbers to confirm these tendencies.

4. Conclusions
A set of complete two- and three-dimensional direct numerical simulations of a

buoyancy-driven flow in a differentially heated air-filled (Pr = 0.71) cavity of aspect
ratio 4 and Rayleigh numbers up to 1010 has been presented. The correctness of the
code has been verified using the method of manufactured solutions, which ensures
that the order of accuracy is in good agreement with the theoretical expectation in
the whole domain. A low-cost parallel computer (a PC cluster with a conventional
1 Gbits/s network) has been used for the simulations. An explicit scheme has been
used for temporal integration and second- and fourth-order schemes for spatial
discretization. These schemes preserve the global kinetic energy balances, even for
very coarse meshes. The parallel algorithm is based on spatial domain decomposition.
A direct algorithm (DSFD) has been used to solve the Poisson equations with only one
communication episode. The main features of the flow, including the time-averaged
flow structure, the power spectra and probability density distributions of a set of
selected monitoring points, the turbulent statistics, the global kinetic energy balances
and the internal waves motion phenomena, have been presented and compared.

All simulations share some basic flow features: a stratified cavity core, recirculating
structures near the downstream corners and thin vertical boundary layers that remain
laminar at their upstream part up to a point above the mid-height where transition
occurs. Periodic oscillations are amplified in the boundary layer and trigger nonlinear
effects provoking the transition. With respect to the centreline dimensionless thermal
stratification, all the numerical simulations performed in this work give values close
to 1 whereas experimental studies yield values of about 0.5. These results confirm the
conclusions of Salat et al. (2004) discarding the three-dimensional effects as a possible
reason for these discrepancies. Understanding the origins of these differences seems
an interesting area for future work.

With respect to the comparison between two- and three-dimensional results, the
time-averaged flow structures are similar, in particular the averaged local and overall
Nusselt numbers. However, significant differences are observed in the flow dynamics.
For two-dimensional simulations, the oscillations at the downstream part of the
boundary layer are clearly stronger, ejecting large unsteady eddies to the cavity core
where the isotherms exhibit a periodical motion around the mean horizontal position.
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In the three-dimensional simulations, these eddies do not persist and their energy is
rapidly passed down to smaller scales of motion causing an evident reduction of the
large-scale mixing effect at the hot upper and cold lower regions and consequently
a still almost motionless stratified cavity core is displayed. The boundary layers
remain laminar or quasi-laminar on their upstream parts, up to the point where these
eddies are ejected. The point were this phenomenon occurs clearly moves to a more
upstream location for the three-dimensional simulations. All these differences become
more marked for the highest Rayleigh number. It is also shown that, even for the
three-dimensional simulations, these eddies are large enough to permanently excite
an internal wave motion oscillating at the Brunt–Väisälä frequency in the stratified
core region.

For the range of Rayleigh number investigated here, second-order statistics are
significant only on the downstream corners of the cavity. The assumption of instan-
taneous two-dimensional maps clearly influences the distribution of all the second-
order statistics, that are substantially different (by two orders of magnitude in certain
cases). For the lowest Rayleigh number, the main differences occur at the vertical
boundary layers, where the two-dimensional simulation incorrectly predicts low values
for all the second-order statistics. However for the two highest Ra numbers, the
differences become more marked: whereas the area of large fluctuations tends to
increase for two-dimensional simulations, for the three-dimensional configuration it
decreases, shrinking to the two downstream corners. Spatial correlations of second-
order statistics are qualitatively similar for all simulations. In the context of turbulence
modelling, the bad correlation between k and εν is especially significant.

We can conclude that two-dimensional simulations may be enough, as a first and
cheaper approach, to capture the general features of buoyancy-driven flows in enclosed
cavities at Rayleigh numbers up to 1010. However, three-dimensional simulations are
necessary for an accurate description of the flow, specially for turbulent statistics.
This issue could be relevant if DNS is to be used to develop or enhance turbulence
modelling.

This work has been financially supported by the ‘Ministerio de Educación y Ciencia’,
Spain; contract/grant number ENE2006-14247.
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Henkes, R. A. W. M. & Le Quéré, P. 1996 Three-dimensional transition of natural-convection
flows. J. Fluid Mech. 319, 281–303.

Hortmann, M., Peric, M. & Scheuerer, G. 1990 Finite volume multigrid prediction of laminar
natural convection: bench-mark solutions. Intl J. Numer. Meth. Fluids 11, 189–207.

Jansen, R. J. A. & Henkes, R. A. W. M. 1996 Instabilities in three-dimensional differentially-heated
cavities with adiabatic horizontal walls. Phys. Fluids 8 (1), 62–74.

Jansen, R. J. A., Henkes, R. A. W. M. & Hoogendoorn, C. J. 1993 Transition to time-periodicity
of a natural-convection flow in a 3-D differentially heated cavity. Intl J. Heat Mass Transfer
36 (11), 2927–2940.

Kraichnan, R. H. 1967 Inertial-ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423.

Labrosse, G., Tric, E., Khallouf, H. & Betrouni, M. 1997 A direct (pseudo-spectral) solver
of the 2-D/3-D Stokes problem: transition to unsteadiness of natural-convection flow in a
differentially heated cubical cavity. Numer. Heat Transfer B 31, 261–276.

Lartigue, B., Lorente, S. & Bourret, B. 2000 Multicellular natural convection in a high aspect
ratio cavity: experimental and numerical results. Intl J. Heat Mass Transfer 43, 3157–3170.
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